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The problem of the motion of an unbalanced rigid cylinder rotating in a stationary 
circular cylindrical chamber is solved numerically. The chamber is of finite length and is 
filled with a viscous gas. External forces which change periodically over time act on the 
inside surface of the cylinder. Calculations determine the steady trajectories of the rotor 
for different rotor velocities, the magnitude of the imbalance, and the amplitude and fre- 
quency of the external forces. The conditions for noncontact motion of the rotating cylinder 
in the chamber are determined. 

i. We will examine two coaxial circular cylinders of length L and radii R I and R 2 (Fig~ 
i). The space between the cylinders is filled with a viscous gas. The center of mass of the 
rigid, solid internal cylinder is located outside its axis of rotation (static disequilibrium). 
The rotor turns about its own axis of symmetry with a constant angular velocity m. The 
external cylinder (the chamber) is stationary. The gap between the cylinders is considerably 
smaller than their radii, so that the Reynolds equations can be used to find the pressure distribu- 
tion in the thin layer of gas. The equation for pressure p hasthe following form [i] in a cylin- 
drical coordinate system (r, #, z) whose z axis is directed along the external cylinder 

~2, o~ ~2"R~ ( o ~ )  = ~ (t)h) +~' ~(Oh), (i.l) 

where p is the density of the gas; h = h(~) is the local thickness of the gap between the 
cylindrical surfaces (R I ! r ! Rz + h); U is the absolute viscosity of the gas. 

The boundary conditions: 

a t  z = -+-L/2 p -- Po 
( 1 . 2 )  

(P0 is the pressure in the medium surrounding the layer). 

We use the pressure field in the gas layer that was found from problem (1.1)-(1.2) to 
determine the force applied to rotating cylinder of length L from the direction of the gas: 

(1.3) 
L/2 2~ L/2 2re 

.f S 
0 0 0 0 

In calculating the reaction of the gas layer, we considered only the pressure forces. In 
the approximation chosen to derive the equation for pressure (i.i), these forces are much 
greater than the frictional forces [2]. 

The motion of a rotating cylinder under periodically changing external forces in a 
gravitational field is described the following equations (in the coordinate system connected 
with the center of the stationary chamber) 

,,v 

mx = F~ + m6o) 2 cos cot + mg(l  5" al cos ~lt), 
. .  

m y  ~ F u + mSo) 2 s in  o~t + toga2 sin ~olt. 

(i.4) 

Here, m is the mass of the rotor; 6 is the displacement of the center of mass from the axis 
of rotation of the rotor; g is acceleration due to gravity; az, a 2 are the amplitudes of the 
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Fig. i 

periodic external forces (such as in the motion of a metal cylinder in a variable electro- 
magnetic field); m~ is the frequency of the external forces. At the initial moment of time, 
the axis of rotation of the rotor coincides with the chamber axis. 

2. The problem of the rotation of the rotor will be solved by direct numerical integra- 
tion of a system of equations describing the motion of the cylinder and the pressure distri- 
bution in the gas layer. We rewrite Eq. (i.i) in the form of a conservation law for the 
volume R~A~Azhj, which includes the node i, j of the grid in the cylindrical coordinate sys- 
tem [3] (hr is the angle subdivision of the grid, while hz is its coordinate subdivision): 

h~AfpR 1 
B1AcpAz ~ (hjpi.j) -- ~ [P~+l/2,j (-- Pi5 + P~+LJ) -- Pi-1/2,j (P~,j -- 

Az h 3 ~ 3 
- -  PI -1J ) ]  12txR~Acp [P~,~+~12 j+~/2 (Pi3+l  Pi,j) - -  P i,3-1121tj-1/~ (P~j - -  

o)R1Az 
- -  P~,~-0] + ~ (m,~+mh~+~z2 - -  P~ ,~-~h~-u2)  = 0 

( i = 0 ,  l ,  2 . . . .  , I - - t ,  ] = t ,  2 , . . . ,  J ) .  

(2.1) 

Here, Ar = 2~/J; Az = L/21; @j = jh@; hj = C - x cos @j - y sin Cj; C is the mean size of the 

radial gap; I and J are the number of grid nodes in the axial and circumferential directions. 
The relationship between the pressure and density of the gas is given by the ratio p/p = 
const. 

In finite-difference form, boundary conditions (1.2) appear as 

P r,.~ = Po, P-L3 = Pl,J, Pl,o = Po,.7, P i , j+ l  ----- Pz,~ 
( l = t ,  2 , . . . , I , ] = l ,  2 . . . . .  J) .  

( 2 . 2 )  

In writing Eqs. (2.2), we used the conditions of periodicity p(z, r = p(z, r + 2~) and 
smoothness (ap/az)z= 0 = 0. 

We will write Eqs. (2.1) in dimensionless form, using the following units of measurement: 
distance across the layer C; distance along the layer RI; time i/w; pressure P0: 

h~A~ ~ r^ 2AAq~Az ~t (h~p~j) - -  j ~-~ tl-'i+ll2,~ (pi+~j  - -  Pij)--P~-II2,~ ( P ~ 3 - - P i - I J ) ] - -  

Az r h 3 h 3 P i 3 - 0 ]  + - -  ~ [ P ~ j + I I ~  j + i 1 2  (P~j+I - -  Pi j )  - -  j - 1 1 2 P i , ~ - 1 1 2  (P i j  - -  

+ AAz (foij+ll~hj+ll2 - -  PLj- l l2hj- l l2)  = 0 

( h j  = t - -  x c o s  r - -  g s i n  q ~ ) .  

(2.3) 

The same notation was used in (2.3) for the dimensionless quantities as for the dimensional 
quantities. 

Using the method of variable directions [4], we reduce the above-formulated problem of 
calculating the pressure field in the layer to a sequence of unidimensional problems. The 
coefficients, the nonlinear terms, and the mass flow rates for the gas in the axial direction 
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are referred to the moment of time tk+i/2 (where k is the number of the time step), while 
the remaining quantities are referred to t k. We approximate the derivative 8p/St by means 
of a second-order difference formula centered relative to tk+i/4. We solve the resulting 

nonlinear system of difference equations along the rows of the grid by the trial-run method, 
regarding the subscript j as a parameter. We determine the initial approximation Pi,j~ for 
each time step by means of linear extrapolation 

( ~+~ ,o  t , 5p~ j  - -  0,5p~,7 ~ (k t ,  2, .), P~.~ ) = , = . .  

where at the first time step tPi,jr i/2)0 = Pi,j'~ 

In the next stage of the method of variable directions, in Eqs. (2.3) we refer the 
linear components of the mass flow flow rates in the circumferential direction to tk+1, 

while the coefficients and the remaining terms of the equations are referred to tk+i/2. 

We center the derivative 8p/St relative to tk+3/4. Then employing the method of cyclic trial 

runs [5], we find the pressure at all of the nodes and the force acting on the rotor from 
the direction of the gas layer at the moment of time tk+ ~. 

We numerically integrate the equations of motion of the rotor (1.4) by the following 
scheme: 

xh+l/~ = xh-1/2 -~ xkAt ,  Yh+ll2 = gh-lI~ "{- g~At, (2.4) 

xk+ll~ = xh-ll2 q - / x~A t ,  y~+~l~ = Y~-~l~ + l ~ A t ,  

x~+i = x~ -p- x~+~/~At, g~+i = y~ -t- y~+~/~At, 

x~+i : x~ + fx~+i/~At, y~+i : y~ ~ ~ + i / ~ A t .  

Here, 

I,J 1 
i j = O  

/y = ~ 1  . mga~sin~)'tpoR~ 92 A~Az Z Sij, ]/rp~j sin q ) j ,  + 6' sin t; 
i,j=O 

M =  mP~ [fC=l ~' 5 ' = ~ - ;  o '  %" 
36~n~n U , =-~,  

Si, j is a coefficient in Simpson's cubature formula. 

We solve system (2.4) with homogeneous initial conditions: 

a t  t = 0 xo = go = O, Xo = Yo -= O, ( 2 . 5 )  

0 = 1 .  where Pi,j 

At the beginning of the computation, we used the approximation xw~----xo-I-x0At/2, 

Yl/2 = go --[- goAt/2, x~/2 = xo + /~oAt /2 ,  g~/2 = go + / y o  At~2. 

3. We will examine the motion of an unbalanced rotor in a gravitational field without 
periodic loads (a I = a= = 0). The rotor, located initially at the center of the chamber, 
later begins to move. Figure 2 shows the formation of the steady-state trajectory of the 
rotor at a velocity n = i00 rps and 6' = 0.3 - curve i. Curves 2 and 3 correspond to the 
steady motion of the rotor with n = 140 and 150 rps. The steady trajectories shown in Figs. 
2 and 3 are close to circular. 

Let us proceed to the study of the rotor in the presence of assigned periodic external 
perturbations of finite amplitude. We assign perturbations only along the vertical, i.e., 
we put a I = i, a 2 = 0, as well as ~I = ~ (the frequencies of rotation of the rotor coincide 
with the frequencies of the perturbations). Calculations of the trajectories of the rotor 
were performed for rotor velocities in the range from 60 to 2500 rps with a change in the 
relative imbalance 6' from 0.i to i (trajectory 4 in Fig. 2 corresponds to n = I00 rps, 6' = 
0.3). The steady-state trajectories of the rotor are close to elliptical. It turns out 
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that at low (n < n I) and high (n > n 2) rotational velocities, the motion of the cylinder is 
unstable: no closed steady-state trajectories of the rotational axis are formed and the 
rotor touches the chamber. It follows from Fig. 3 that for a given degree of imbalance there 
is a finite interval of rotor velocities [nl, n 2] within which the rotor can move without 
touching the chamber. The left boundary of this interval (n = nl) is nearly independent of 
the relative imbalance, while a decrease in imbalance displaces the right boundary to the 
region of higher velocities. 

Slight ellipticity of the chamber (the gap function in this case having the form hj = 
1.066 - 0.133 cos2#j - c cos #j - y sin ~j) leads to broadening of the zone in which stable 
elliptical trajectories are fo~med - due %o an increase in the critical rotational velocity 
n 2. This is illustrated by the dashed curve in Fig. 3. 

Figure 4 shows the dependence of the maximum amplitude of the trajectory a on the 
velocity of the rotor (6' = 0.3, curve i). With a tenfold increase in velocity (from 102 
to i0 s rps), a increases by a factor of 33. 

Figure 5 shows the effect of periodic horizontal perturbations. Curve 1 corresponds to 
al = 0, a 2 = i, ~i = ~ = 2~ 150 sec -I, while curves 2 and 3 correspond to az = 0, a 2 = 0.i, 
ml = 1 sec -I, n = 150 and i00 rps (6' = 0.3). The trajectory of the rotor with the velocity 
n = 150 rps and ~l = ~ nearly coincides with line 2. An increase in the amplitude of the 
horizontal perturbations a 2 to i0 in the case of low-frequency disturbances (m I = sec -l) has 
almost no effect on the steady circular trajectories of the rotor and does not lead to its 
destruction. This conclusion is supported by calculations performed for cylinder velocities 
in the range from i00 to 500 rps. With external perturbations of the amplitude a 2 = i00 
(al = 0, m I = i sec -I, n = 150 rps/sec), the rotor begins to touch the chamber very soon. 

We studied the effect of the degree of imbalance of the rotor on the formation of steady- 
state trajectories in the presence of periodic horizontal perturbations for a I = 0, a 2 = i, 
ml = m = 200~ sec -I. The relative imbalance 6' changed within the range from 0.i to i. The 
amplitude of the steady elliptical trajectories nearly doubled with a change in 6' from 0.2 to 
1 (curve 2 in Fig. 4). 

A change in the degree of imbalance of the rotor from 0.i to 0.5 in the presence of 
vertical perturbations with a frequency equal to half the frequency of rotation of therotor 
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(m = 200~ sec -I, a 2 = 0, a I = i) had no significant effect on the form or orientation of the 
rotor's steady-state trajectories. Compared to the case when perturbations are absent (see 
Fig. 2), the presence of finite vertical perturbations leads to an increase in the amplitude 
of the steady-state trajectories by a factor of 8-9, a shift in the center of the trajectory 
from the first to the third quadrant in the (x, y) plane, and transformation of the originally 
circular path into an elliptical path. Most of our computer calculations were performed on 
16 x 40 and 24 x 60 grids. 

l. 
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3. 
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MOTION OF A BED LOAD 

P. G. Petrov UDC 532.543 

This article deals with the problem of mathematically modeling a thin moving layer of a 
two-phase mixture bounded below by a stationary granular medium and above by a liquid flow. 
The position of the top boundary of the moving layer is specified beforehand along with the 
normal and shear stresses on it. These characteristics can be obtained from the solution of 
hydrodynamic equations. 

The moving mixture is assumed to be uniform and its acceleration small (the latter is 
ignored). As is customary in calculations performed for shallow water [i], the contribution 
of shear stresses on areas normal to the surface is considered to be negligible, while pres- 
sure is distributed in accordance with a hydrostatic law. 

Formulation of the Problem. In accordance with the above assumptions, the equations of 
motion are written in the form 

Op/Os + pgO~/Os + 8~/0m = O, ( 1 )  

Op/Ol+pgO~/Ol + O~t/Om = O, OplOm = pg cos ?, 

where ~ = $(x, y) is the equation of the surface of the mixture; x and y are horizontal 
cartesian coordinates; s and s are orthogonal curvilinear coordinates on the surface of the 
mixture; m is the axis directed along a normal to the surface of the mixture (m = 0 on the 
surface $ = $(x, y)); p is the pressure in the mixture; ~s and xs are projections of the 
shear stress T on areas parallel to the surface of the mixture; p is the density of the mix- 
ture (p = fPr + (i - f)Pb); Pr and Pb is the density of the particles and water; f is concen- 
tration, the value of which is determined below; y is the acute angle between the normal to 
the surface of the mixture and a vertical line. 

The rheological relation for the shear stress includes Coulomb's law for a bulk medium 
and Prandtl's law for a fluid: 

) v = - -  ~mm (p~ tg  cp -[- ~b). ( 2 )  
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